UnivIS
Informationssystem der Universität Kiel © Config eG 
Christine - Pax optima rerum
  Sammlung/Stundenplan Home  |  Kontakt  |  Hilfe    
Suche:      Semester:   
 Lehr-
veranstaltungen
   Personen/
Einrichtungen
   Räume   Forschungs-
bericht
   Publi-
kationen
   Telefon &
E-Mail
 
 
 Darstellung
 
Druckansicht

 
 
 Außerdem im UnivIS
 
Vorlesungsverzeichnis

 
 
Veranstaltungskalender

 
 
Organisation >> Mathematisch-Naturwissenschaftliche Fakultät >> Mathematisches Seminar (Sektion Mathematik) >> Stochastik >>

  Stochastik I (V:Stoch1) (060789)

Dozent/in
Prof. Dr. rer. nat. Jan Kallsen

Angaben
Vorlesung, 4 SWS
Praesenzveranstaltung
Zeit und Ort: Di, Fr 8:15 - 9:45, HHP6 - R.EG.024 (außer Di 1.7.2025, Fr 4.7.2025); Einzeltermine am 1.7.2025 8:15 - 9:45, LMS4 - R.325; 4.7.2025 8:15 - 9:45, HHP6 - R.EG.029
vom 15.4.2025 bis zum 11.7.2025

Voraussetzungen / Organisatorisches
Voraussetzungen: Analysis I-III, Lineare Algebra I-II
Modultitel: Stochastik I
Modulhandbuch:
https://www.math.uni-kiel.de/de/studium_und_lehre/studienverlauf-module
Modulcode: math-wth.1:
https://cloud.rz.uni-kiel.de/index.php/s/mnrDTeJQe7w2e46/download?files=math-wth.1.pdf
Zielgruppe:
Studierende im 1-Fach Bachelor Mathematik mit Kenntnis insbesondere der Inhalte von Analysis III.
Link zu OLAT:
https://lms.uni-kiel.de/auth/RepositoryEntry/5594382462/CourseNode/111052054166243
Informationen zu Prüfungen folgen!

Inhalt
• Grundlagen der Wahrscheinlichkeitstheorie
• Reelle Wahrscheinlichkeitsmaße und Zufallsgrößen
• Stochastische Unabhängigkeit
• Multivariate Normalverteilung
• Konvergenzbegriffe in der Stochastik
• Gesetze der großen Zahlen
• Charakteristische Funktionen
• Zentraler Grenzwertsatz
• Bedingte Erwartungen
Unter Stochastik versteht man die Lehre von den Gesetzmäßigkeiten des Zufalls.  Zuerst scheint dies schwer greifbar, denn macht nicht gerade das Fehlen von Gesetzmäßigkeiten den Zufall aus? Das stimmt natürlich etwa für den einfachen Münzwurf, bei dem man wohl davon ausgehen muss, dass man vorher den Ausgang nicht seriös vorhersehen kann. Wirft man allerdings die Münze sehr oft, so wird sich der Anteil der Zahl-Würfe erfahrungsgemäß bei 1/2 einpendeln. Dies stellt ein Beispiel einer solchen Gesetzmäßigkeit dar, die wir in der Vorlesung genauer studieren werden. 
Für die Auseinandersetzung mit der Mathematischen Stochastik ist es nicht wesentlich, ob Sie daran glauben, dass Zufall ein der Natur inhärentes Phänomen ist oder nicht. Auch wenn Sie die Vorstellung von dem Auftreten von Zufall in der Natur ablehnen, so ist eine Beschreibung vieler Phänomene mit dem bescheidenen Wissen von uns Menschen in der Sprache der Stochastik durchaus erhellend. Um sich mit der (sehr schönen) mathematischen Theorie zu beschäftigen, ist diese Frage sowieso unwichtig.  Die Mathematische Stochastik gliedert sich -- stark vereinfacht -- in zwei Bereiche:  Wahrscheinlichkeitstheorie: Beschreibung zufälliger Vorgänge und Untersuchung der Folgerungen daraus  (Mathematische) Statistik: Schlussfolgerungen aus Beobachtungen 
In dieser Vorlesung werden wir uns fast ausschließlich mit der Wahrscheinlichkeitstheorie beschäftigen. Diese bildet aber auch die Grundlage für die seriöse Beschäftigung mit Statistik, welche in der Vorlesung „Stochastik 2" folgen wird.  Dieses Modul bildet die Grundlage für alle weiteren Veranstaltungen in der Stochastik. 
Als wesentliche Basis werden Grundkenntnisse aus der Maßtheorie (Analysis III) hilfreich sein. Diese werden in der Vorlesung noch einmal aufgegriffen.

Empfohlene Literatur
• A. Irle. „Wahrscheinlichkeitstheorie und Statistik“. Teubner.
• H.-O. Georgii. „Stochastik - Einführung in die Wahrscheinlichkeitstheorie und Statistik“. de Gruyter, 2009.
• A. Klenke. „Wahrscheinlicheitstheorie“. Springer, 2013.
• Jacod, Protter. „Probability Essentials“. Springer, 2004.

Zusätzliche Informationen
Erwartete Teilnehmerzahl: 40

Zugeordnete Lehrveranstaltungen
UE: Übung zu Stochastik I
Dozent/in: Prof. Dr. rer. nat. Jan Kallsen

UnivIS ist ein Produkt der Config eG, Buckenhof